Java自学网

 找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 4555|回复: 54

[完整版]Information Theory-Jan C.A van der Lubbe(附习题答案)

  [复制链接]

该用户从未签到

6

主题

171

帖子

334

积分

普通会员

Rank: 2

积分
334
发表于 2022-7-17 20:42:01 | 显示全部楼层 |阅读模式
1997年Jan C.A van der Lubbe所著教材]Information Theory的再版,1997年版由Cambridge University Press出版,再版由Delft Academic Press出版。每章节最后的Solutions部分附上了每张练习的答案。原版英文。- d- o0 n! I: s3 v
PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
9 v& p: q3 y5 L% B: \The Pitt Building. Trumpington Street, Cambridge CB2 IRP, United Kingdom& F8 j/ R2 @. L
CAMERIDGE UNIVERSLTY PRESS) r; R2 z% P% {4 d4 K9 g) n
The Edinburgh Building, Cambridge CB2 2RU, United Kingdom- J1 u6 e0 P9 `5 N* L- p0 P7 a
40 West 20th Street, New York, NY10011-421L, USA
7 G8 A- e0 \7 P; W& p* T3 p  N' P" D10, Stamford road, Oakleigh, Melbourne 3166, Australia
1 E9 w% a' f6 ~: b8 M) m8 cOriginally published in Dutch as informatietheorie by vSSD and a vSSD
0 B7 X( |3 d0 G" q4 N7 H5 {1988: J: o, @* D* X: ~# G
C English translation Cambridge University Press 1997! Q# m/ J; O. |3 _
The book is in copyright, Subject to statutory exception and to the provisions! F2 d6 ~! q1 D6 @/ a
take place without the written permission of cambridge University Press,
/ G* A$ ]+ g  Gof relevant collective licensing agreements, no reproduction of any part m
( I9 g  s5 J, p1 R: A6 q" YFirst published in English by Cambridge University Press 1997 as& H- F3 m, v9 t4 r4 v/ z  P8 L
Information Theory
  A/ ]4 I1 t9 f' C; Q' Z$ D+ E' qPanted in the United kingdon at the University Press, Canbridge; n+ W" l2 e9 C0 a, }0 f
Typeset in Times( J& |) k$ D5 p5 ]7 Y
A catalogue record for this book is available fiom the British Library
7 R; s% I" ?/ f7 A  rISBN 0 521 461987 hardback: \* d7 ]( H* t! Y8 K/ V
ISBN0 $21467608 paperback
$ G0 I1 ^- i! P1 k" e: `1 m7 g3 c5 Y, s% U0 o
Preface1 R9 O+ q( j- W, `3 l% v
On all levels of society systems have been introduced that deal with the' x# p9 p/ k/ B# b
transmission, storage and processing of information. we live in what is
' y+ A. y0 ]2 H7 Musually called the infomation society Information has become a key word
$ b7 p2 w/ b0 \; n! Yin our society. It is not surprising therefore that from all sorts of quarters( R2 F9 W6 x$ h& {
interest has been shown in what information really is and consequently in# @* B9 C! L/ @2 l
quiring a better knowledge as to how information can be dealt with as; l7 p1 R5 y/ Z
fficiently as possible
. l2 S$ U7 B' T8 t3 q- eInformation theory is characterized by a quantitative approach to the notion
& \) S0 S5 W* E; G3 S- G/ [6 Cof information. By means of the introduction of measures for intormation
: o6 n/ E) k1 E, m1 V& \answers will be sought to such questions as: How to transmit and store* o/ b/ T& x$ v2 i8 H+ [' b3 y
information as compactly as possible? What is the maxinum quantity of" T& n& D5 k0 x* e3 }
information that can be transmitted through a channel? How can security
; k3 P) f3 X% |) W9 v# n8 u6 I" ]best be arranged? Etcetera. Crucial questions that enable us to enhance the+ A9 ], h. E6 E: P) M" s
performance and to grasp the limits of our information systems  j/ P9 w' D# T# [7 O8 |- W
This book has the purpose of introducing a number of basic notions of
' `# j- ^" Z( G+ [) X, Linformation theory and clarifying them by showing their significance in( I/ g8 O* i* v- @* y5 F% N$ D9 _
present applications. Matters that will be described are, among others:1 S2 n$ K1 Y: k) {# a! O! F
Shannons information measure. discrete and continuous information
4 C! F. M; J$ Psources and information channels with or without memory, source and8 \# g( [% z! f+ w" @# ^
hannel decoding, rate distortion theory, error-correcting codes and the
# l% `$ m, m4 w( \2 n( Ginformation theoretical approach to cryptology Special attention has been1 S) e! D* v5 Y- W
paid to multiterminal or network information theory; an area with still lots
0 \8 c. B" M# u( d& p9 {* H& Dof unanswered questions, but which is of great significance because most of
, _1 h/ K2 O) s, N9 tour information is transmitted by networks
  {9 x8 B: X: W0 QAll chapters are concluded with questions and worked solutions. That
: I& ]% e- ~' E7 Q9 ~makes the book suitable for self study" k* ~2 B( a2 f; a' B2 T* ~

- O0 R3 M2 u( G1 ^# d0 `xii Preface
: F0 z3 S4 O  R5 e' @The content of the book has been largely based on the present lectures b
2 q0 H9 X7 I1 t: x) T- Nthe author for students in Electrical Engincering, Tcchnical Mathematics
0 X" l: E5 A2 L3 Aand Informatics, Applied Physics and Mechanical Engincering at the Delft& J5 b) S) R1 |3 t" _9 [
University of Technology, as well as on former lecture notes by profs' a& L$ x4 e  [# A5 b1 ?9 b
Ysbrand Boxma, Dick Boekec and Jan Biemond. The questions have becn. |# G' e# h6 _, y) T' A/ Q2 U& P
derived from recent exams
" D; j9 @8 w5 z2 C" l, h) cThe author wishes to express his gratitude to the colleagues mentioncd
3 _$ W% w/ H3 \- R7 T" }' Sabove as well as the other colleagues who in one way or other contributed to
9 T7 D$ u2 w- g' k9 J4 Fthis textbook. Especially I wish to thank e. Prof. Ysbrand Boxma, who5 s! ?& D+ q% r% X3 ~
lectured on information theory at the delft university of technology when i
) }! {3 x1 N( s2 bwas a student and who introduced me to information theory. Under his8 \% `' d( E0 S/ z& f
inspiring guidance I rcceived my M.Sc. in Elcctrical Engineering and my# N1 X  |  a! R; Z/ [
Ph.D. in the techrical sciences. In writing this book his old lecture notes) ]# w( A2 B7 m3 Y" H
were still very helpful to me. His influence has been a determining factor in
7 G# n5 X; j6 t# `9 p, |! U: t; D, smy later career.
5 n, B8 V2 E! Z) y8 O. |# O6 e# RDelft, December 1996
8 q0 T+ T7 ^  A: o5 |0 G3 ^, HJan C.A. van der Lubbe/ p# W6 u% x! @
3 p! O3 n4 Z- S( \
Contents
9 ]- m  l2 j, q* w8 rreace9 U1 ?$ G2 i2 n8 j8 n
page xr
2 p$ G$ }, f- ODiscrete information
' C4 C+ j( F8 D, a& }/ a" }1.1 The ongin of information theory
1 |% Q5 U9 Y+ u; z, W$ B; f2 S2 The concept of probability' J$ O9 b& S+ M9 A. j8 Z
48 j" w! C3 _7 j- t/ @# A3 [
1. 3 Shannon's information measure4 u( T: I1 B8 t
8
2 Z3 c3 I) i# P' K9 R5 U5 o* R1. 4 Conditional, joint and mutual information measures
4 R3 [1 N3 t8 A16
+ [% s3 @/ A5 \! y2 c1.5 Axiomatic foundations
* A+ q% S# q( [! Z228 B' \6 h- V0 L
1. 6 The communication model
  j' _+ j# b( \5 @d7 Exercises
. t$ D5 P8 h4 [: I' {27
/ K1 b/ |  O9 {# n1. 8 Solutions5 ?2 h: _2 Y- g/ ~! l( K
29
6 d) A5 U7 ^* P$ I2 The discrete memoryless information source6 j/ v9 c% o  H! X: R
39) v1 N% O' A: E. ^+ d, |
2.1 The discrete information source
1 }6 k9 F: C* P0 `; t39
9 S, J& H3 e+ f7 f2.2 Source coding
2 y. Q. k( F) m" c430 e0 a9 ]8 p( [8 w% N9 h1 L
2.3 Coding strategies
. y3 Z" S  a+ v7 _49! h5 Z% [7 p6 K# D
2. 4 Most probable messages; I1 B" e& p* _, J& ?  C
56# X5 o! _6 p2 O, H0 K# x
2.5 Exercises) G$ T* q. n! y5 y
2.6 Solutions3 h# E" ]: K- T% i
3
$ j8 K2 A$ F1 p+ CThe discrete information source with memory
  U& a4 d9 \5 y4 t' J79
# e9 b' ?0 E0 c0 p3.1 Markov processes8 E9 m3 E6 o" _' A# C' `* t  l; K* q
79+ D1 k, L' j. h  x0 V( |
3.2 The information of a discrete source with memory' K3 L) A% B' @
858 q" m3 E6 Q, q) \4 C
3.3 Coding aspects2 i0 C  @: \4 M: v6 z
9+ M" ]9 [8 O! T8 X3 p
3.4 Exercises& t; ~$ D& @5 h& d" [
95
4 Y0 z8 k9 A. ]4 ~: C1 ^7 b7 n3.5 Solutions1 `8 U: s: A# K! C& _  G7 a& N, f
98" n( I4 U( t# @4 N$ g
The discrete communication channel2 h+ \2 z# s! N8 @
l096 g& E9 }5 h: m9 J
4.1 Capacity of noiseless channels0 q& j$ B% I8 z2 I
109
4 T2 t) ^# y6 v! m3 Z4 c4.2 Capacity of noisy channels7 _+ Z" A$ Y* T" h0 B( }
l168 {$ m0 w) N: X* K: t
4.3 Error probability and equivocation" l0 y# y# R! u( y
1268 q& n* ]: s. c5 C' A. W7 k
; `# f% Q% p* k/ d8 i& ?: [) X0 F) x
vila Contents
7 u1 O0 y2 o& B  N4.4 Coding theorem for discrete memory less channeis) ~- x1 C- s" S9 s" Q
4.5 Cascading of channels+ A" W( k- ^) j& n9 p( K
133
- o/ E5 T3 h: E, t4.6 Channels with memory
7 F4 h9 K$ I; [0 u' k3 P136" E5 T0 Y8 O" s3 r
47 Exercises% r/ @& d# a5 H2 N0 M9 |
1383 `9 M- D% _( {( v5 H
4.8 Solutions# r3 Z, L8 |: m  B* W" H
42! h6 Q$ ^# s, n
s The continue
" Q* n/ I% O  `5 K- X4 anformation source9 L9 d, [- [4 `
155+ F# y7 k/ r; Z, O' a2 k7 G
5.1 Probability density functions
) S6 s2 m/ a* T4 N  n6 r. r155
( e; S; @" h$ [/ R; i8 M+ j5.2 Stochastic signals+ i5 |1 ~& B% T% P% ?+ P1 \
164
! R2 a; r; q4 B8 H5.3 The continuous information measure
- K- s7 h# G% _% x* s171
1 _1 Y) f! ^5 Z2 h7 A# ?5.4 Information measures and sources with memory
; ]; ~) Q2 U% C: V176
% E2 Z- [# I. W5 r& L. x5.5 Information power
5 W" W$ W. t# G% q. Y186% V) z5 W+ u  w) ?; {. k4 H( W1 F
56 Exercises
& w$ a: _" b: a# H/ u1906 J/ V$ M- f3 h: u: e5 X7 t- u: s
5.7 Solutions; [- H3 f! H6 h3 y4 h$ a3 p: w1 P
194
& L1 h& G6 W, {- }2 ^/ D  c6 The continuous communication changel9 h8 z  d9 p. R& ]
209
" z" B" q4 ^$ @: Q1 ], J6. 1 The capacity of continuous communication channe]s6 Q. ]: j4 v( V6 m, w, c
2094 d0 f. U6 w! _3 K0 X
6.2 The capacity in the case of additive gaussian white noise
: R+ A3 ~/ E8 b214% L& d8 x' p6 `9 M7 e6 @' g
6.3 Capacity bounds in the case of non-gaussian white noise
* w. S& s7 b5 a0 u2 T  X% \. D6 S215
! @9 ]+ _$ K: n: o! O$ S! A6. 4 Channel coding theorem
: b6 a/ s0 ?0 B/ e! b! K2184 d! i1 K- A- v
6.5 The capacity of a gaussian channel with memory( u& {/ |1 n- w% t/ I+ \
222
2 n+ D% Y. P7 ?) E6.6 Exercises% F1 Y$ q, J. E5 A/ K% d
227
. Q" t" f% A" b( Z6.7 Solutions. L# v3 v4 M# B, U# b% ?6 D/ F+ ~
229
( H! s) S/ D5 z+ u5 e, T6 a7 Rate distortion theory
6 B4 C# p% f- o) O238
! L& L1 F  q; _! z2 M+ M* f0 o7.1 The discrete rate distortion function1 v! S# r# o+ S3 n8 g) K" t
238
: O4 c# q. B+ i7.2 Properties of the r(D) function
9 B0 M) w, C: v8 O2 R" u: t243
1 B& m! N0 _( S7.3 The binary case0 Z' o+ o+ a* E" o
250+ @: p# U* [4 X' b9 Q* [9 C9 I
7.4 Source coding and information transmission thcorems
9 J) }) `3 X( D) D7 V253
; f0 \7 e% ?8 V& _7.5 The continuous rate distortion function4 n8 i" b& a0 `8 D5 B  K
25
$ p; j2 @* u1 k1 x# o# }- T7.6 Exercise7 l1 G8 Q& Q1 f1 @) c# T, T
264$ {% {! T% v; q- K& {, s$ g
TI Solutions
2 y" @& v+ t+ m2 N7 p265
0 ~& L* a7 O" g( J/ \0 c: ^Network information theory
9 y" L3 Z4 [  @4 L+ K268
; }% Z/ o* Z2 {! ]. Y+ y: C4 S  ^: i- a8.1 Introduction) [: a5 B# F- y6 N: g
268$ B) O, U4 t. l; H* w3 V+ s
8.2 MulLi-access communication channel
" j* I; r, r! E2 o9 I7 O( N( o' Y$ S5 J2693 }5 O7 L. B  B- i3 y' R3 C
8. 3 Broadcast channels
- G0 J# ]- v: r1 i28I
" v" |. U; \5 d5 `, u8.4 Two-way channels$ O- C5 \$ z3 }! q
2926 D) ~. d1 C  _' W$ q% m
8.5 Exercises- f) s1 o5 G$ _- j. `7 e8 s& v
298/ R1 o. W5 \0 e) ]" ?; O' E/ I
8.6 Solutions
7 X0 Q7 k. ]& Q" o9 Error-correcting codes
; Z9 M, x/ u, W. B6 W/ ]6 k305
$ b  ~5 E1 s0 C5 X9.1 Introduction
: A- z: [& V1 U305
! P& y+ [1 e& A) u- \
" e( s/ C) N* |/ M$ lContents3 H+ ~" u! m6 B% z7 t
9.2 Linear block codes
6 C; T# r' F" F; J) f/ Z307; |* k8 u9 D+ o  \" g
9.3 Syndrome coding
1 Q- L3 V; x1 S3I2
3 N; p' o9 g" D- [9.4 Hamming codes
: I* U# P7 z/ T6 l  ^/ V316! M2 y: n7 F4 n4 x+ I
9.5 Exercises
4 O' l6 [) L: a318
1 _* P; a! \" e% c6 q4 M: O3 t: Y9.6 Solutions
" [3 ~7 `) ?+ d- Q5 p& ^- `319+ o' |$ i2 n# P9 C& A9 J
10 Cryptology6 ~$ ~, f' j3 v
324
# Y( R( J5 E+ O, M10.1 Cryptography and cryptanalysis
' P3 _+ l: F; H8 ?% V3 k324- w* R$ w1 W3 w% a$ k4 a$ h
10.2 The general scheme of cipher systems
1 n  v$ S' |3 w7 E9 c3 l: |325" a2 J+ m% k; l+ ~- P
10.3 Cipher systems$ i0 U. k) M2 M( J
327
4 n/ M$ `3 d9 e( {% `! O* |( z10.4 Amount of information and security0 S, P" K' O9 v/ T' v9 V
334
$ W! ^" ~/ f( I% R7 k10.5 The unicity dislance; f* }& r' }2 H6 a6 s
33' q, C/ l( Q* M% ^9 l. P
10.6 Exercises
7 w* W- G, X! J8 q* v340+ R4 S! N' s# g- S5 x  n; ]
10.7 Solutions& P! d' |; N+ c3 \
341" a$ }& d$ E8 T  V* D3 D
Bibliography
  @9 I/ ?' I0 F345
) E0 P# Q- N6 v% BIndex
  Q" R8 l6 t8 D" w& j4 Q. A% p6 @347
% z3 F* |& A; I4 Z( v) u
7 Z( D, L/ I' H* ?1
; D. T/ p  I9 }# `# J3 Y' Q$ M4 Y# mDiscrete information' k; Z# L7 x& P: ?6 r% P' d
1.I The origin of information theory' f: u1 `8 C/ f- g
Information theory is the science which deals with the concept informa
) ~; f% W1 c) B" ]- A$ m% Qtion, its measurement and its applications. In its broadest sense distinction
: U* ~/ R  y0 n1 i1 }7 N8 ccan be made between the American and British traditions in information
# r0 E+ [, Q' A; I; _! Dtheory
8 V* E! }' d9 N7 a7 yIn general there are three types of informaLion
* X1 b& V/ A; }! Rsyntactic information, related to the symbols from which messages are# I$ l. W7 x( O& ^9 }8 ~' s$ f2 f- t
built up and to their interrelations* p/ a: N4 k; y0 _7 _( g1 D
semantic information, related to the meaning of messages, their, E: D5 B9 j0 Z. w9 R  X+ O
referential aspect
$ E) `- C- t/ dpragmatic informarion, related to the usage and effect of messages
& V- x! G! b: _4 G$ v; C9 S% mThis being so, syntactic information mainly considers the form of, G5 x4 J. e. |/ G, x. O
nformation, whereas semantic and pragmatic information are related to the
, c' C2 y. i" V3 V4 {. y! V. I' `information content/ Q5 Q: b- l2 ~$ ^, V+ |- j( U
Consider the following sentences
5 V- [, L4 G8 i+ }( E(O John was brought to the railway station by taxi, ?' B* J( V8 `$ m" O3 ^
(U The taxi brought John to the railway station  c4 R' R, s8 }: e$ w* t5 m+ i. F- a
(i) There is a traffic jam on highway A3, between Nuremberg and Munich
0 I2 F2 Z/ e5 \2 ?, h9 pin Germany.
+ e* m8 ]/ n2 G' N( Eiv) There is a traffic jam on highway A3 in Germany.
' r$ m8 c% ^6 s3 _7 c' NThe sentences(i)and (ii)are syntactically different. HoweveR, semantically
+ _/ a: _4 ]) kand pragmatically they are identical. They bave the same meaning and are/ ^: d1 o0 ?; i0 w  C
both equally informative
( G7 l+ B0 S" m+ ]9 Y1 |& b; R1 `The sentences (ii)and (iv) do not differ only with respect to their syntax' w( [! W7 G0 f( q+ G0 }
but also with respect to their semantics Sentence (iii)gives more precise
8 s! P5 D7 ~  iinformation than sentence (iv)" z( A/ ?: s# `/ D2 {; K% I. w, e9 e# n
) f  q8 p0 N4 u( {+ d* n" |
2 Discrete information) L% W7 U5 [  n  Z5 a( f
The pragmatic aspect of information mainly depends on the context. The
2 S+ f0 ]5 m' t' A( xinformation contained in the sentences (iii) and (iv) for example is relevant
  |. J* h1 }7 M* Cfor someone in Germany, but not for someone in the USA& r/ r# b. e+ W/ ]
The semantic and pragmatic aspects of information are studied in the british
- u$ Z1 |7 p6 N% n# xtradition of information theory. This being So, the British tradition is closely
1 ^& L9 p7 {7 N5 F. W! hrelated to philosophy, psychology and biology. The British tradition is
. m/ d) V$ k8 i4 C: Q  Winfluenced mainly by scientists like MacKay, Carnap, Bar-Hillel, Ackoff
- \5 l2 {$ N: e& m0 dand hintikka* u$ E' F1 m, ~( J2 z
The American tradition deals with the syntactic aspects of information. I4 d) z: I$ ~" y0 E3 p& l
this approach there is full abstraction from the meaning aspects of informa
! s# c: e7 b0 t( f% p& F: Ction. There, basic questions are the measurement of syntactic information$ r' \5 n  R& Q6 w' |- O7 K
the fundamental limits on the amount of information which can be trans
+ E) R: a: \& g* e' ?/ a) d5 v$ Bmitted, the fundamental limits on the compression of information which can
/ w* p, B! X6 w* k7 I6 xbe achieved and how to build information processing systems approaching; m" V4 o" y4 u% Q
these limits. A rather technical approach to information remains
- h) F# v6 ^1 V, K8 uThe American tradition in information theory is sometimes referred to as
. e8 Q" m$ b9 H% c& hcommunication theory, mathematical information theory or in short as7 T& X6 H9 B$ y, _/ ?* Y: P0 Q
information theory. Well-known scientists of the American tradition are7 t7 g8 w! I* m& @3 T
Shannon, Renyi, Gallager and Csiszar among others
+ j* ^. K6 R( p* x4 sHowever, Claude E. Shannon, who published his article"A mathematical
5 a+ D: ]% m# N1 P7 v& c& dtheory of communication in 1948, is generally considered to be the founder: D( `# j! o! A1 T# K
of the American tradition in information theory. There are, nevertheless, a
  w/ P7 ]" P4 z/ Tnumber of forerunners to Shannon who attempted to formalise the efficient7 R' Z% k* O* c6 n: D
use of communication systems.
/ |3 a9 G1 d$ N1 |  L$ ZIn 1924 H. Nyquist published an article wherein he raised the matter of how
. I. Z- b! Q/ v# W/ imessages (or characters, to use his own words) could be sent over a+ r/ e  q1 h+ ^. w! l2 r
telegraph channel with maximum possible speed, but without distortion. The9 m8 H2 K/ d& N/ m: @% R
term information however was not yet used by him as such( c) K& E. z" W5 J: [4 |
It was R.Y. L. Hartley(1928)whc first tried to define a measure of6 V8 U' O) R% I0 O3 U/ G1 r
information. He went about it in the following manner.
4 P' l3 c' y: T, [0 ~0 HAssume that for every symbol of a message one has a choice of s
' T$ _5 Z" M1 k: Opossibilities. By now considering messages of I symbols, one can distinguish
; S7 G. a- Z* {" us messages. Hartley now defined the amount of information as the' j3 @: `% S- o- T3 a
logarithm of the number of distinguishable messages. In the case of' p  u( {  r: e# Z
messages of length I one therefore finds
  p) y& R, W1 P+ f4 q1 i& j2 w+ KHH(s)=log[sF=I log(s).% e2 E6 G  Q% ]$ J/ p( ?) U
For messages of length 1 one would find
2 O2 I4 |  D8 [& B2 q" g- o0 t7 A! ^% t6 D; g

5 x! z0 G5 s6 b% U$ K7 y2 U/ X
9 t! f- ~3 W* B8 J/ f( o
6 Q# z3 X. F6 k4 J3 I: ^7 |资源下载地址和密码(百度云盘):
游客,如果您要查看本帖隐藏内容请回复
[/hide] 百度网盘信息回帖可见
) A5 T2 M! o0 V  s' y: C. F0 ~* b+ F8 }  n
# @# G% f% ^" Z1 q: W' ^! W
& q1 o4 P+ c2 O+ m
本资源由Java自学网收集整理【www.javazx.com】
回复

使用道具 举报

该用户从未签到

4

主题

149

帖子

300

积分

普通会员

Rank: 2

积分
300
发表于 2022-7-17 20:45:18 | 显示全部楼层
强烈支持楼主ing……
回复 支持 反对

使用道具 举报

该用户从未签到

0

主题

4615

帖子

9232

积分

普通会员

Rank: 2

积分
9232
发表于 2022-7-27 11:34:51 | 显示全部楼层
大佬  厉害呀
回复 支持 反对

使用道具 举报

该用户从未签到

0

主题

4579

帖子

9159

积分

普通会员

Rank: 2

积分
9159
发表于 2022-8-20 11:22:45 | 显示全部楼层
多谢分享~~~~~~~~~~~~~
回复 支持 反对

使用道具 举报

该用户从未签到

0

主题

4595

帖子

9192

积分

普通会员

Rank: 2

积分
9192
发表于 2022-8-28 08:08:25 | 显示全部楼层
居然在这里找到了 不易
回复 支持 反对

使用道具 举报

该用户从未签到

0

主题

4600

帖子

9202

积分

普通会员

Rank: 2

积分
9202
发表于 2022-9-1 18:38:32 | 显示全部楼层
非常好非常好非常好非常好非常好非常好
回复 支持 反对

使用道具 举报

该用户从未签到

0

主题

4614

帖子

9230

积分

普通会员

Rank: 2

积分
9230
发表于 2022-9-12 12:56:31 | 显示全部楼层
学习下
回复 支持 反对

使用道具 举报

  • TA的每日心情
    开心
    2015-6-4 18:31
  • 签到天数: 1 天

    [LV.1]初学乍练

    0

    主题

    4654

    帖子

    9329

    积分

    普通会员

    Rank: 2

    积分
    9329
    发表于 2022-9-15 20:41:10 | 显示全部楼层
    学习了学习了学习了
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    0

    主题

    4713

    帖子

    9426

    积分

    普通会员

    Rank: 2

    积分
    9426
    发表于 2022-9-16 06:44:36 | 显示全部楼层
    资源持续更新 牛
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2015-7-28 14:19
  • 签到天数: 1 天

    [LV.1]初学乍练

    0

    主题

    4688

    帖子

    9394

    积分

    普通会员

    Rank: 2

    积分
    9394
    QQ
    发表于 2022-9-21 17:50:38 | 显示全部楼层
    感谢感谢感谢感谢感谢感谢感谢感谢
    回复 支持 反对

    使用道具 举报

    您需要登录后才可以回帖 登录 | 立即注册

    本版积分规则

    QQ|Archiver|手机版|小黑屋|Java自学网

    GMT+8, 2025-4-3 16:23 , Processed in 0.145534 second(s), 29 queries .

    Powered by Javazx

    Copyright © 2012-2022, Javazx Cloud.

    快速回复 返回顶部 返回列表